반응형
1. 설치 상태 확인
nvidia-smi
nvidia 드라이버 상태, 디바이스 상태 등을 확인

2. cuDNN 다운로드
cuDNN 사이트에서 로그인 후, 위의 CUDA 버전에 맞는 cuDNN을 다운로드 받는다.
https://developer.nvidia.com/cudnn
CUDA Deep Neural Network
cuDNN provides researchers and developers with high-performance GPU acceleration.
developer.nvidia.com

3. 파일 설치
터미널에서 다운로드 된 경로로 이동(cd Downloads/) 후 압축 해제
tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz
/usr/local/cuda 디렉토리로 복사
cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive
sudo cp include/cudnn* /usr/local/cuda/include
sudo cp lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
cuda 디렉토리와 실제 설치된 cuda-11.7 디렉토리를 심볼릭 링크 설정
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
sudo ln -sf /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn.so.8.9.7 /usr/local/cuda-11/targets/x86_64-linux/lib/libcudnn.so.8
4. 설치 확인
sudo ldconfig
ldconfig -N -v $(sed 's/:/ /' <<< $LD_LIBRARY_PATH) 2>/dev/null | grep libcudnn

4-1. Tensorflow에서 확인
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print(len(gpus))
실행결과 본인 컴퓨터의 gpu 갯수가 나오면 성공 !
4-2. Pytorch로 확인
import torch
# Check if GPU is available
if torch.cuda.is_available():
# Get the number of available GPUs
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
# Get the name of each GPU
for i in range(num_gpus):
print(f"GPU {i + 1}: {torch.cuda.get_device_name(i)}")
else:
print("No GPU available. Using CPU.")
실행 결과
Number of available GPUs: 1
GPU 1: NVIDIA GeForce RTX 3080
반응형
'Computer' 카테고리의 다른 글
vscode SSH reload 무한 새로고침 해결 (1) | 2024.04.07 |
---|---|
[Ubuntu18.04] Deep learning conda 환경설정 (1) | 2024.03.31 |
Virus & Artificial Intelligence (1) | 2022.08.31 |
Python 반복문 (1) | 2022.07.10 |
데이터 형식 (0) | 2022.07.06 |